Predicting equilibrium shifts – LeChatelier's Principle

system	change	result
$\mathrm{CO}_2(g) + \mathrm{H}_2(g) \rightleftharpoons \mathrm{H}_2\mathrm{O}(g) + \mathrm{CO}(g)$	a drying agent is added to absorb H2O	
$H_2(g) + I_2(g) \rightleftarrows 2HI(g)$	Some nitrogen gas is added	
$NaCl(s) + H_2SO_4(l) \rightleftharpoons Na_2SO_4(s) + HCl(g)$	reaction is carried out in an open container	
$H_2O(l) \rightleftarrows H_2O(g)$	water evaporates from an open container	
$\operatorname{HCN}(aq) \rightleftharpoons \operatorname{H}^{+}(aq) + \operatorname{CN}^{-}(aq)$	the solution is diluted	
$\operatorname{AgCl}(s) \rightleftharpoons \operatorname{Ag^{+}}(aq) + \operatorname{Cl^{-}}(aq)$	some NaCl is added to the solution	
$N_2(g)$ + 3 H ₂ (g) \rightleftarrows 2 NH ₃ (g) ΔH = −92 kJ/mol	The volume of the container is reduced at constant temperature	
$N_2(g)$ + 3 H ₂ (g) \rightleftharpoons 2 NH ₃ (g) ΔH = −92 kJ/mol	The temperature of the reacting system is increased	
$N_2(g)$ + 3 H ₂ (g) \rightleftharpoons 2 NH ₃ (g) ΔH = −92 kJ/mol	a catalyst is added to speed up this reaction	
$\operatorname{Co}(\operatorname{H}_2\operatorname{O})_{6^{2+}}(aq) + 4\operatorname{Cl}(aq) \rightleftharpoons \operatorname{Co}(\operatorname{Cl})_{4^{2-}}(aq) + 6\operatorname{H}_2\operatorname{O}(l)$	Some acetone is added to the system	
$Co(H_2O)_{6^{2+}}(aq) + 4 Cl^{-}(aq) \rightleftharpoons Co(Cl)_{4^{2-}}(aq) + 6 H_2O(l)$	Some water is added to the system	

Challenge question

The commercial production of hydrogen is carried out by treating natural gas with steam at high temperatures and in the presence of a catalyst ("steam reforming of methane"):

 $CH_4 + H_2O \rightarrow CH_3OH + H_2$

Given the following boiling points:

 $CH_4 = -161^{\circ}C$ $H_2O = 100^{\circ}C$ $CH_3OH = 65^{\circ}$ $H_2 = -253^{\circ}C$,

predict the effects of an increase in the total pressure on this equilibrium...

a) at 50°

b) at 75°

c) at 120°C.